Java线程池源码分析
阅前提示
参考文献中的文章非常的好,基本看完了就能理解很多东西,推荐阅读
源码中也提供了很多注释文本,推荐对照源码学习。
重要概念和接口
Runnable 接口
@FunctionalInterface
public interface Runnable {
public abstract void run();
}线程可以接受一个实现 Runnable 接口的对象,并执行对应的逻辑。
Callable 接口
@FunctionalInterface
public interface Callable<V> {
V call() throws Exception;
}类似Runnalbe接口,但可以返回结果和抛出异常
Future 接口
表示异步执行的结果,提供了获取结果以及取消计算执行等方法。
public interface Future<V> {
// 取消任务执行,mayInterruptIfRunning参数为true时将中断正在执行任务的线程,否则正在执行的任务将继续执行
boolean cancel(boolean mayInterruptIfRunning);
// 是否任务在执行完成前被取消
boolean isCancelled();
// 任务是否完成,不管任务正常结束、抛出异常还是被取消都认为任务完成
boolean isDone();
// 等待任务完成并获得结果
// 计算被取消时抛出CalcellationException
// 计算抛出异常时抛出ExecutionException
// 当前线程等待时被中断抛出InteruptedException
V get() throws InterruptedException, ExecutionException;
// 超时版本的get,如果等待超时抛出TimeoutException
V get(long timeout, TimeUnit unit)
throws InterruptedException, ExecutionException, TimeoutException;
}Executor 接口
public interface Executor {
void execute(Runnable command);
}线程池基础接口,提交一个任务到线程池执行。
Memory consistency effects: Actions in a thread prior to submitting a Runnable object to an Executor happen-before its execution begins, perhaps in another thread.
ExecutorSerivce 接口
ExecutorService继承了Executor接口,通常我们使用ExecutorService作为线程池接口,它提供了丰富的功能,一般能够满足需求。
public interface ExecutorService extends Executor {
// 已提交的任务继续执行,但不再接收新任务,等待正在执行任务终止请使用awaitTermination
void shutdown();
// 尝试停止所有正在执行的任务,终止所有等待任务的处理,返回等待任务列表,等待正在执行任务终止请使用awaitTermination
// 无法保证所以任务都能终止,经典的实现会通过`interrupt`取消任务,但如果任务不响应中断,则可能永远都不会停止
List<Runnable> shutdownNow();
// 线程池是否关闭
boolean isShutdown();
// shutdown后所有任务是否已经结束
// 这个方法只有在调用shutdown或者shutdownNow后才可能返回true
boolean isTerminated();
// 在shutdown后调用,阻塞直到所有任务执行完成或者超时发生或者当前线程被中断
boolean awaitTermination(long timeout, TimeUnit unit)
throws InterruptedException;
// 提交一个有返回值的任务,通过Future对象获取返回值
// task不能为null,否则抛出NullPointerException
// 如果任务不能被调用执行,抛出 RejectedExecutionException
<T> Future<T> submit(Callable<T> task);
// 类似 submit(Callable),返回值对应传入的result参数
<T> Future<T> submit(Runnable task, T result);
// 类似 submit(Callable),返回值为null
Future<?> submit(Runnable task);
// 执行给定的任务列表,当全部完成时返回Futrue列表,在操作执行时修改给定的集合会导致未定义行为
// 在等待时发生中断,抛出InterruptedException,取消未完成的任务
// 任务列表和其中的任务都不能为null,否则抛出NullPointerException
// 如果任何任务不能被调度执行,抛出RejectedExecutionException
<T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks)
throws InterruptedException;
// 超时版本的invokeAll,如果超时发生,取消未完成的任务
<T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks,
long timeout, TimeUnit unit)
throws InterruptedException;
// 类似invokeAll,执行给定的任务列表,返回一个成功执行任务的结果,指没有抛出异常,取消未执行完成的任务
// tasks为空时抛出IllegalArgumentException
// 如果没有任务成功完成,抛出ExecutionException
<T> T invokeAny(Collection<? extends Callable<T>> tasks)
throws InterruptedException, ExecutionException;
// 超时版本的invokeAny
// 超时发生抛出TimeoutException
<T> T invokeAny(Collection<? extends Callable<T>> tasks,
long timeout, TimeUnit unit)
throws InterruptedException, ExecutionException, TimeoutException;
}Memory consistency effects: Actions in a thread prior to the submission of a Runnable or Callable task to an ExecutorService happen-before any actions taken by that task, which in turn happen-before the result is retrieved via Future. get().
Doug Lea 给了一个终止线程池的例子,首先调用shutdown拒绝接受新任务,然后调用shutdowNow,取消逗留的任务,这里特别处理了当前线程遇到interrupt的情况。
void shutdownAndAwaitTermination(ExecutorService pool) {
pool.shutdown(); // Disable new tasks from being submitted
try {
// Wait a while for existing tasks to terminate
if (!pool.awaitTermination(60, TimeUnit.SECONDS)) {
pool.shutdownNow(); // Cancel currently executing tasks
// Wait a while for tasks to respond to being cancelled
if (!pool.awaitTermination(60, TimeUnit.SECONDS))
System.err.println("Pool did not terminate");
}
} catch (InterruptedException ie) {
// (Re-)Cancel if current thread also interrupted
pool.shutdownNow();
// Preserve interrupt status
Thread.currentThread().interrupt();
}
}FutureTask 类源码解析
接口RunnableFuture是Runnalbe的Future,run方法的成功执行对应Future的完成,并允许获取结果。
public interface RunnableFuture<V> extends Runnable, Future<V> {
void run();
}FutureTask类实现了RunnableFuture,FutureTask的具体实现原理留在后面再讲。(todo)
AbstractExecutorService 源码解析
AbstractExecutorService抽象类派生自ExecutorService接口,然后在其基础上实现了几个实用的方法,这些方法提供给子类进行调用。
抽象类实现了 invokeAny 和 invokeAll 方法(这两个方法先不看 todo),方法newTaskFor用于将Runnable或者Callable包装成FutureTask。提交任务到线程池中有两类方法,submit用于需要返回值的场景,execute用于不需要返回值的场景,当然可以都只用submit方法,当不需要返回值时返回 null 即可。
public abstract class AbstractExecutorService implements ExecutorService {
// 将runnable包装成FutureTask
protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
return new FutureTask<T>(runnable, value);
}
// 将Callable包装成FutureTask
protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
return new FutureTask<T>(callable);
}
// 包装成FutureTask,并交给底层execute方法执行
public Future<?> submit(Runnable task) {
if (task == null) throw new NullPointerException();
RunnableFuture<Void> ftask = newTaskFor(task, null);
execute(ftask);
return ftask;
}
public <T> Future<T> submit(Runnable task, T result) {
if (task == null) throw new NullPointerException();
RunnableFuture<T> ftask = newTaskFor(task, result);
execute(ftask);
return ftask;
}
public <T> Future<T> submit(Callable<T> task) {
if (task == null) throw new NullPointerException();
RunnableFuture<T> ftask = newTaskFor(task);
execute(ftask);
return ftask;
}ThreadPoolExecutor
ThreadPoolExecutor是 JDK 中的线程池实现,实现了任务提交、线程管理、监控等方法。
通过构造函数,介绍一些重要的属性:
- corePoolSize 核心线程数,注意有时将核心线程数内的线程称为核心线程,但核心线程本身和其他线程一样
- maximumPoolSize 最大线程数
- workQueue 任务队列,BlockingQueue 接口的某个实现(常用 ArrayBlockingQueue 和 LinkedBlockingQueue)
- keepAliveTime 空闲线程的保活线程,默认只对非核心线程生效,可以通过设置
allowCoreThreadTimeout(true)使核心线程数内的线程可以被回收 - threadFactory 用于生成线程,比如设置线程的名字
- handler 设置线程池的拒绝策略
Doug Lea 采用一个 32 为的整数来存放线程池状态和线程池中的线程数,其中高 3 为用于存放线程池状态,低 29 位表示线程数。
private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0));
private static final int COUNT_BITS = Integer.SIZE - 3;
private static final int CAPACITY = (1 << COUNT_BITS) - 1;
// runState is stored in the high-order bits
private static final int RUNNING = -1 << COUNT_BITS;
private static final int SHUTDOWN = 0 << COUNT_BITS;
private static final int STOP = 1 << COUNT_BITS;
private static final int TIDYING = 2 << COUNT_BITS;
private static final int TERMINATED = 3 << COUNT_BITS;
// Packing and unpacking ctl
private static int runStateOf(int c) { return c & ~CAPACITY; }
private static int workerCountOf(int c) { return c & CAPACITY; }
private static int ctlOf(int rs, int wc) { return rs | wc; }
/*
* Bit field accessors that don't require unpacking ctl.
* These depend on the bit layout and on workerCount being never negative.
*/
private static boolean runStateLessThan(int c, int s) {
return c < s;
}
private static boolean runStateAtLeast(int c, int s) {
return c >= s;
}
private static boolean isRunning(int c) {
return c < SHUTDOWN;
}线程池各种状态的介绍:
- RUNNING: 接受新的任务,处理等待队列中的任务
- SHUTDWON: 不接受新的任务,但会继续处理等待队列中的任务
- STOP: 不接受新的任务提交,不再处理等待队列中的任务,中断正在执行的线程
- TIDYING: 所有的任务都销毁了,workCount 为 0,执行钩子方法 terminated()
- TERMINATED: terminated()方法调用结束后,线程池的状态切换为此
RUNNING 定义为-1,SHUTDOWN 定义为 0,其他都比 0 大,所以等于 0 时不能提交任务,大于 0 的话,连正在执行的任务也要中断
状态迁移过程:
- RUNNING -> SHUTDOWN,调用 shutdown()
- (RUNNING or SHUTDOWN) -> STOP: 调用 shutdownNow()
- SHUTDOWN -> TIDYING: 当任务队列和线程池都清空后,有 SHUTDOWN 转换为 TIDYING
- STOP -> TIDYING: 任务队列清空后
- TIDYING -> TERMINATED: terminated()方法结束后
Doug Lea 将线程池中的线程包装成内部类 Worker,所以任务是 Runnable (内部变量名叫 task 或者 command),线程是 worker
AQS: todo worker 的实现包含复杂的并发控制,这些暂时不考虑
private final class Worker
extends AbstractQueuedSynchronizer
implements Runnable
{
/** Thread this worker is running in. Null if factory fails. */
final Thread thread;
/** Initial task to run. Possibly null. */
Runnable firstTask;
/** Per-thread task counter */
volatile long completedTasks;
/**
* Creates with given first task and thread from ThreadFactory.
* @param firstTask the first task (null if none)
*/
Worker(Runnable firstTask) {
setState(-1); // inhibit interrupts until runWorker
this.firstTask = firstTask;
this.thread = getThreadFactory().newThread(this);
}
/** Delegates main run loop to outer runWorker */
public void run() {
runWorker(this);
}execute是一个非常重要的方法,所有submit方法底层都会调用execute方法提交任务。可以看到尽管这段代码非常短小,但由于并发问题实现逻辑比较绕。
public void execute(Runnable command) {
if (command == null)
throw new NullPointerException();
int c = ctl.get();
// 如果当前线程数少于核心线程数,直接添加一个worker来执行任务,将当前任务作为它的第一个任务
// addWorker调用会原子的检查runState和workerCount,避免错误添加新的线程
if (workerCountOf(c) < corePoolSize) {
if (addWorker(command, true))
return;
c = ctl.get();
}
// 如果线程池处于RUNNING状态,将这个任务添加到任务队列workQueue中
if (isRunning(c) && workQueue.offer(command)) {
// double-check
int recheck = ctl.get();
// 如果线程不处于RUNNING状态,移除已经入队的任务,并执行拒绝策略
if (! isRunning(recheck) && remove(command))
reject(command);
// 如果线程池还是RUNNING状态,并且线程数为0,那么开启新的线程
else if (workerCountOf(recheck) == 0)
addWorker(null, false);
}
// 如果队列满了,尝试创建新的线程,如果已经达到最大线程数,执行拒绝策略
else if (!addWorker(command, false))
reject(command);
}addWorker 方法用来创建新的线程
private boolean addWorker(Runnable firstTask, boolean core) {
retry:
for (;;) {
int c = ctl.get();
int rs = runStateOf(c);
// Check if queue empty only if necessary.
// 线程池非RUNNINKG状态,则关闭
// 需要排除一种特殊情况,线程池处于SHUTDOWN状态,且等待队列非空,这种情况下应该允许进一步判断是否创建新的worker
if (rs >= SHUTDOWN &&
! (rs == SHUTDOWN &&
firstTask == null &&
! workQueue.isEmpty()))
return false;
for (;;) {
int wc = workerCountOf(c);
if (wc >= CAPACITY ||
wc >= (core ? corePoolSize : maximumPoolSize))
return false;
// 原子操作,增加worker计数
if (compareAndIncrementWorkerCount(c))
break retry;
c = ctl.get(); // Re-read ctl
// 如果线程池自身状态发生改变,则回到外层for循环
// 如果仅仅是cas失败,在内层循环重试
if (runStateOf(c) != rs)
continue retry;
// else CAS failed due to workerCount change; retry inner loop
}
}
boolean workerStarted = false;
boolean workerAdded = false;
Worker w = null;
try {
// Worker的构造方法会调用ThreadFactory创建新的线程
w = new Worker(firstTask);
final Thread t = w.thread;
if (t != null) {
// 这是整个线程池的全局锁,因为关闭线程池需要这个锁,所以持有锁期间,线程池不会被关闭
final ReentrantLock mainLock = this.mainLock;
mainLock.lock();
try {
// Recheck while holding lock.
// Back out on ThreadFactory failure or if
// shut down before lock acquired.
int rs = runStateOf(ctl.get());
// RUNNING状态或者处于SHUTDOWN,这时会继续执行等待队列中的任务
if (rs < SHUTDOWN ||
(rs == SHUTDOWN && firstTask == null)) {
if (t.isAlive()) // precheck that t is startable
throw new IllegalThreadStateException();
// 添加worker到workers HashSet中
workers.add(w);
int s = workers.size();
// largestPoolSize用来记录worker数量的最大值
if (s > largestPoolSize)
largestPoolSize = s;
workerAdded = true;
}
} finally {
mainLock.unlock();
}
// 添加成功的话,启动线程
if (workerAdded) {
t.start();
workerStarted = true;
}
}
} finally {
// 如果线程没有启动,需要做一些清理工作,比如前面workCount加一,将其回退
if (! workerStarted)
addWorkerFailed(w);
}
return workerStarted;
}private void addWorkerFailed(Worker w) {
final ReentrantLock mainLock = this.mainLock;
mainLock.lock();
try {
// 移除创建的worker
if (w != null)
workers.remove(w);
// 减低worker计数
decrementWorkerCount();
// 如果当前worker阻碍线程池终止,重新检查
tryTerminate();
} finally {
mainLock.unlock();
}
}线程池中的线程实际会执行runWorker方法
final void runWorker(Worker w) {
Thread wt = Thread.currentThread();
// 处理第一个任务
Runnable task = w.firstTask;
w.firstTask = null;
w.unlock(); // allow interrupts
boolean completedAbruptly = true;
try {
// 循环获取任务
while (task != null || (task = getTask()) != null) {
w.lock();
// If pool is stopping, ensure thread is interrupted;
// if not, ensure thread is not interrupted. This
// requires a recheck in second case to deal with
// shutdownNow race while clearing interrupt
// 如果线程状态大于等于STOP,需要中断线程
// 否则清理线程中断状态并且检查此时线程池状态是否大于等于STOP,如果是,则中断线程
if ((runStateAtLeast(ctl.get(), STOP) ||
(Thread.interrupted() &&
runStateAtLeast(ctl.get(), STOP))) &&
!wt.isInterrupted())
wt.interrupt();
try {
// 执行前操作
beforeExecute(wt, task);
try {
task.run();
afterExecute(task, null);
} catch (Throwable ex) {
// 执行后操作
afterExecute(task, ex);
throw ex;
}
} finally {
task = null;
w.completedTasks++;
w.unlock();
}
}
completedAbruptly = false;
} finally {
// 执行线程关闭
// 1. 说明getTask返回null,队列中没有任务需要执行了,执行关闭
// 2. completdAbruptly
processWorkerExit(w, completedAbruptly);
}
}private Runnable getTask() {
boolean timedOut = false; // Did the last poll() time out?
for (;;) {
int c = ctl.get();
// Check if queue empty only if necessary.
// 1. 线程池处于SHUTDOWN状态,并且workQueue为空
// 2. 线程池状态>= STOP
if (runStateAtLeast(c, SHUTDOWN)
&& (runStateAtLeast(c, STOP) || workQueue.isEmpty())) {
decrementWorkerCount();
return null;
}
int wc = workerCountOf(c);
// Are workers subject to culling?
// 允许核心线程数内的线程回收,或者当前线程数超过了核心线程数,那么有可能发生超时关闭
boolean timed = allowCoreThreadTimeOut || wc > corePoolSize;
// 如果线程数量超过最大线程数量,比如开发者调用setMaximumPoolSize调小了线程池,那么多余的worker就需要被关闭
// 如果允许超时,并且获取任务发生超时,则关闭线程
// 在队列不为空时,不允许关闭最后一个线程
if ((wc > maximumPoolSize || (timed && timedOut))
&& (wc > 1 || workQueue.isEmpty())) {
if (compareAndDecrementWorkerCount(c))
return null;
continue;
}
try {
Runnable r = timed ?
workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS) :
workQueue.take();
if (r != null)
return r;
timedOut = true;
} catch (InterruptedException retry) {
// 如果此 worker 发生了中断,采取的方案是重试
// 解释下为什么会发生中断,这个读者要去看 setMaximumPoolSize 方法,中断空闲的worker
timedOut = false;
}
}
}拒绝策略:
- CallerRunsPolicy: 只要线程池没有关闭,由调用者线程执行任务
- AbortPolicy: 默认策略,直接抛出 RejectedExecutionException
- DiscardPolicy: 直接丢弃任务
- DiscardOldestPolicy: 将队列对头的任务(等待时间最久的任务)扔掉,提交这个任务到等待队列中
Executors工具类
- 生成一个固定大小的线程池
public static ExecutorService newFixedThreadPool(int nThreads) {
return new ThreadPoolExecutor(nThreads, nThreads,
0L, TimeUnit.MILLISECONDS,
new LinkedBlockingQueue<Runnable>());
}最大线程数设置为和核心线程数相等,此时keepAliveTime设置为0(线程池默认不会不会corePoolSize内的线程),任务队列采用LinkedBlockingQueue,无界队列。
- 单线程线程池,类似上面,核心线程数为1
public static ExecutorService newSingleThreadExecutor() {
return new FinalizableDelegatedExecutorService
(new ThreadPoolExecutor(1, 1,
0L, TimeUnit.MILLISECONDS,
new LinkedBlockingQueue<Runnable>()));
}- 缓存线程池
public static ExecutorService newCachedThreadPool() {
return new ThreadPoolExecutor(0, Integer.MAX_VALUE,
60L, TimeUnit.SECONDS,
new SynchronousQueue<Runnable>());
}核心线程数为0,最大线程数为Integer.MAX_VALUE,keepAliveTime为60s,任务队列采用SynchronousQueue
线程数不设上限,任务队列为同步队列,60s超时后空闲线程会被回收